3.839 \(\int \sqrt{\cos (c+d x)} \sqrt{a+b \sec (c+d x)} \, dx\)

Optimal. Leaf size=67 \[ \frac{2 \sqrt{\cos (c+d x)} \sqrt{a+b \sec (c+d x)} E\left (\frac{1}{2} (c+d x)|\frac{2 a}{a+b}\right )}{d \sqrt{\frac{a \cos (c+d x)+b}{a+b}}} \]

[Out]

(2*Sqrt[Cos[c + d*x]]*EllipticE[(c + d*x)/2, (2*a)/(a + b)]*Sqrt[a + b*Sec[c + d*x]])/(d*Sqrt[(b + a*Cos[c + d
*x])/(a + b)])

________________________________________________________________________________________

Rubi [A]  time = 0.145862, antiderivative size = 67, normalized size of antiderivative = 1., number of steps used = 4, number of rules used = 4, integrand size = 25, \(\frac{\text{number of rules}}{\text{integrand size}}\) = 0.16, Rules used = {4264, 3856, 2655, 2653} \[ \frac{2 \sqrt{\cos (c+d x)} \sqrt{a+b \sec (c+d x)} E\left (\frac{1}{2} (c+d x)|\frac{2 a}{a+b}\right )}{d \sqrt{\frac{a \cos (c+d x)+b}{a+b}}} \]

Antiderivative was successfully verified.

[In]

Int[Sqrt[Cos[c + d*x]]*Sqrt[a + b*Sec[c + d*x]],x]

[Out]

(2*Sqrt[Cos[c + d*x]]*EllipticE[(c + d*x)/2, (2*a)/(a + b)]*Sqrt[a + b*Sec[c + d*x]])/(d*Sqrt[(b + a*Cos[c + d
*x])/(a + b)])

Rule 4264

Int[(u_)*((c_.)*sin[(a_.) + (b_.)*(x_)])^(m_.), x_Symbol] :> Dist[(c*Csc[a + b*x])^m*(c*Sin[a + b*x])^m, Int[A
ctivateTrig[u]/(c*Csc[a + b*x])^m, x], x] /; FreeQ[{a, b, c, m}, x] &&  !IntegerQ[m] && KnownSecantIntegrandQ[
u, x]

Rule 3856

Int[Sqrt[csc[(e_.) + (f_.)*(x_)]*(b_.) + (a_)]/Sqrt[csc[(e_.) + (f_.)*(x_)]*(d_.)], x_Symbol] :> Dist[Sqrt[a +
 b*Csc[e + f*x]]/(Sqrt[d*Csc[e + f*x]]*Sqrt[b + a*Sin[e + f*x]]), Int[Sqrt[b + a*Sin[e + f*x]], x], x] /; Free
Q[{a, b, d, e, f}, x] && NeQ[a^2 - b^2, 0]

Rule 2655

Int[Sqrt[(a_) + (b_.)*sin[(c_.) + (d_.)*(x_)]], x_Symbol] :> Dist[Sqrt[a + b*Sin[c + d*x]]/Sqrt[(a + b*Sin[c +
 d*x])/(a + b)], Int[Sqrt[a/(a + b) + (b*Sin[c + d*x])/(a + b)], x], x] /; FreeQ[{a, b, c, d}, x] && NeQ[a^2 -
 b^2, 0] &&  !GtQ[a + b, 0]

Rule 2653

Int[Sqrt[(a_) + (b_.)*sin[(c_.) + (d_.)*(x_)]], x_Symbol] :> Simp[(2*Sqrt[a + b]*EllipticE[(1*(c - Pi/2 + d*x)
)/2, (2*b)/(a + b)])/d, x] /; FreeQ[{a, b, c, d}, x] && NeQ[a^2 - b^2, 0] && GtQ[a + b, 0]

Rubi steps

\begin{align*} \int \sqrt{\cos (c+d x)} \sqrt{a+b \sec (c+d x)} \, dx &=\left (\sqrt{\cos (c+d x)} \sqrt{\sec (c+d x)}\right ) \int \frac{\sqrt{a+b \sec (c+d x)}}{\sqrt{\sec (c+d x)}} \, dx\\ &=\frac{\left (\sqrt{\cos (c+d x)} \sqrt{a+b \sec (c+d x)}\right ) \int \sqrt{b+a \cos (c+d x)} \, dx}{\sqrt{b+a \cos (c+d x)}}\\ &=\frac{\left (\sqrt{\cos (c+d x)} \sqrt{a+b \sec (c+d x)}\right ) \int \sqrt{\frac{b}{a+b}+\frac{a \cos (c+d x)}{a+b}} \, dx}{\sqrt{\frac{b+a \cos (c+d x)}{a+b}}}\\ &=\frac{2 \sqrt{\cos (c+d x)} E\left (\frac{1}{2} (c+d x)|\frac{2 a}{a+b}\right ) \sqrt{a+b \sec (c+d x)}}{d \sqrt{\frac{b+a \cos (c+d x)}{a+b}}}\\ \end{align*}

Mathematica [C]  time = 3.36157, size = 198, normalized size = 2.96 \[ \frac{\sqrt{\cos (c+d x)} \sec ^2\left (\frac{1}{2} (c+d x)\right ) \sqrt{a+b \sec (c+d x)} \left (-i \text{EllipticF}\left (i \sinh ^{-1}\left (\tan \left (\frac{1}{2} (c+d x)\right )\right ),\frac{b-a}{a+b}\right )+\sin (c+d x) \sqrt{\frac{1}{\cos (c+d x)+1}} \sqrt{\frac{a \cos (c+d x)+b}{(a+b) (\cos (c+d x)+1)}}+i E\left (i \sinh ^{-1}\left (\tan \left (\frac{1}{2} (c+d x)\right )\right )|\frac{b-a}{a+b}\right )\right )}{d \sqrt{\frac{1}{\cos (c+d x)+1}} \sqrt{\frac{a \cos (c+d x)+b}{(a+b) (\cos (c+d x)+1)}}} \]

Antiderivative was successfully verified.

[In]

Integrate[Sqrt[Cos[c + d*x]]*Sqrt[a + b*Sec[c + d*x]],x]

[Out]

(Sqrt[Cos[c + d*x]]*Sec[(c + d*x)/2]^2*Sqrt[a + b*Sec[c + d*x]]*(I*EllipticE[I*ArcSinh[Tan[(c + d*x)/2]], (-a
+ b)/(a + b)] - I*EllipticF[I*ArcSinh[Tan[(c + d*x)/2]], (-a + b)/(a + b)] + Sqrt[(1 + Cos[c + d*x])^(-1)]*Sqr
t[(b + a*Cos[c + d*x])/((a + b)*(1 + Cos[c + d*x]))]*Sin[c + d*x]))/(d*Sqrt[(1 + Cos[c + d*x])^(-1)]*Sqrt[(b +
 a*Cos[c + d*x])/((a + b)*(1 + Cos[c + d*x]))])

________________________________________________________________________________________

Maple [B]  time = 0.287, size = 923, normalized size = 13.8 \begin{align*} \text{result too large to display} \end{align*}

Verification of antiderivative is not currently implemented for this CAS.

[In]

int(cos(d*x+c)^(1/2)*(a+b*sec(d*x+c))^(1/2),x)

[Out]

-2/d/((a-b)/(a+b))^(1/2)*cos(d*x+c)^(1/2)*((b+a*cos(d*x+c))/cos(d*x+c))^(1/2)*(-cos(d*x+c)*sin(d*x+c)*Elliptic
F((-1+cos(d*x+c))*((a-b)/(a+b))^(1/2)/sin(d*x+c),(-(a+b)/(a-b))^(1/2))*(1/(a+b)*(b+a*cos(d*x+c))/(cos(d*x+c)+1
))^(1/2)*(1/(cos(d*x+c)+1))^(1/2)*a+cos(d*x+c)*sin(d*x+c)*EllipticF((-1+cos(d*x+c))*((a-b)/(a+b))^(1/2)/sin(d*
x+c),(-(a+b)/(a-b))^(1/2))*(1/(a+b)*(b+a*cos(d*x+c))/(cos(d*x+c)+1))^(1/2)*(1/(cos(d*x+c)+1))^(1/2)*b+cos(d*x+
c)*sin(d*x+c)*(1/(a+b)*(b+a*cos(d*x+c))/(cos(d*x+c)+1))^(1/2)*(1/(cos(d*x+c)+1))^(1/2)*EllipticE((-1+cos(d*x+c
))*((a-b)/(a+b))^(1/2)/sin(d*x+c),(-(a+b)/(a-b))^(1/2))*a-cos(d*x+c)*sin(d*x+c)*(1/(a+b)*(b+a*cos(d*x+c))/(cos
(d*x+c)+1))^(1/2)*(1/(cos(d*x+c)+1))^(1/2)*EllipticE((-1+cos(d*x+c))*((a-b)/(a+b))^(1/2)/sin(d*x+c),(-(a+b)/(a
-b))^(1/2))*b-EllipticF((-1+cos(d*x+c))*((a-b)/(a+b))^(1/2)/sin(d*x+c),(-(a+b)/(a-b))^(1/2))*a*(1/(a+b)*(b+a*c
os(d*x+c))/(cos(d*x+c)+1))^(1/2)*(1/(cos(d*x+c)+1))^(1/2)*sin(d*x+c)+EllipticF((-1+cos(d*x+c))*((a-b)/(a+b))^(
1/2)/sin(d*x+c),(-(a+b)/(a-b))^(1/2))*b*(1/(a+b)*(b+a*cos(d*x+c))/(cos(d*x+c)+1))^(1/2)*(1/(cos(d*x+c)+1))^(1/
2)*sin(d*x+c)+(1/(a+b)*(b+a*cos(d*x+c))/(cos(d*x+c)+1))^(1/2)*(1/(cos(d*x+c)+1))^(1/2)*EllipticE((-1+cos(d*x+c
))*((a-b)/(a+b))^(1/2)/sin(d*x+c),(-(a+b)/(a-b))^(1/2))*a*sin(d*x+c)-(1/(a+b)*(b+a*cos(d*x+c))/(cos(d*x+c)+1))
^(1/2)*(1/(cos(d*x+c)+1))^(1/2)*EllipticE((-1+cos(d*x+c))*((a-b)/(a+b))^(1/2)/sin(d*x+c),(-(a+b)/(a-b))^(1/2))
*b*sin(d*x+c)+cos(d*x+c)^2*((a-b)/(a+b))^(1/2)*a-cos(d*x+c)*((a-b)/(a+b))^(1/2)*a+cos(d*x+c)*((a-b)/(a+b))^(1/
2)*b-((a-b)/(a+b))^(1/2)*b)/(b+a*cos(d*x+c))/sin(d*x+c)

________________________________________________________________________________________

Maxima [F]  time = 0., size = 0, normalized size = 0. \begin{align*} \int \sqrt{b \sec \left (d x + c\right ) + a} \sqrt{\cos \left (d x + c\right )}\,{d x} \end{align*}

Verification of antiderivative is not currently implemented for this CAS.

[In]

integrate(cos(d*x+c)^(1/2)*(a+b*sec(d*x+c))^(1/2),x, algorithm="maxima")

[Out]

integrate(sqrt(b*sec(d*x + c) + a)*sqrt(cos(d*x + c)), x)

________________________________________________________________________________________

Fricas [F]  time = 0., size = 0, normalized size = 0. \begin{align*}{\rm integral}\left (\sqrt{b \sec \left (d x + c\right ) + a} \sqrt{\cos \left (d x + c\right )}, x\right ) \end{align*}

Verification of antiderivative is not currently implemented for this CAS.

[In]

integrate(cos(d*x+c)^(1/2)*(a+b*sec(d*x+c))^(1/2),x, algorithm="fricas")

[Out]

integral(sqrt(b*sec(d*x + c) + a)*sqrt(cos(d*x + c)), x)

________________________________________________________________________________________

Sympy [F]  time = 0., size = 0, normalized size = 0. \begin{align*} \int \sqrt{a + b \sec{\left (c + d x \right )}} \sqrt{\cos{\left (c + d x \right )}}\, dx \end{align*}

Verification of antiderivative is not currently implemented for this CAS.

[In]

integrate(cos(d*x+c)**(1/2)*(a+b*sec(d*x+c))**(1/2),x)

[Out]

Integral(sqrt(a + b*sec(c + d*x))*sqrt(cos(c + d*x)), x)

________________________________________________________________________________________

Giac [F]  time = 0., size = 0, normalized size = 0. \begin{align*} \int \sqrt{b \sec \left (d x + c\right ) + a} \sqrt{\cos \left (d x + c\right )}\,{d x} \end{align*}

Verification of antiderivative is not currently implemented for this CAS.

[In]

integrate(cos(d*x+c)^(1/2)*(a+b*sec(d*x+c))^(1/2),x, algorithm="giac")

[Out]

integrate(sqrt(b*sec(d*x + c) + a)*sqrt(cos(d*x + c)), x)